
Measuring Cooperative Robotic Systems Using Simulation-Based Virtual
Environment

Xiaolin Hu

Computer Science Department
Georgia State University, Atlanta GA, USA 30303

Bernard P. Zeigler

Arizona Center for Integrative Modeling and Simulation
University of Arizona, Tucson AZ, USA 85721

ABSTRACT
Simulation-based study plays an important role in experimenting,
understanding, and evaluating intelligent robotic systems. While
robot models can be created and studied in a simulated environment,
replacing some of the robot models with their real robot counterparts
brings simulation-based study one step closer to the reality. It also
provides the flexibility to allow real robots to be experimented
within a virtual environment. This capability of robot-in-the-loop
simulation is especially useful for large-scale cooperative robotic
systems whose complexity and scalability severely limit the
possibility for study and evaluation in a physical environment with
real robots. This paper presents a simulation-based approach that
allows a cooperative robotic system to be effectively evaluated in a
virtual environment with combined real and virtual robots. This
capability adds to conventional simulation-based study to form an
integrated measuring process. An example of robotic convoy system
is presented together with metrics to measure the formation
coherence of cooperative robotic system. Some preliminary
simulation results are presented.

KEYWORDS: Cooperative Robotic System, Virtual
Environment, Robot-in-the-Loop Simulation, Robotic Convoy System

1. INTRODUCTION
Cooperative robotic systems couple computational
intelligence to the physical world. These systems consist of
multiple homogenous or heterogeneous robots that perceive
the environment, make decisions, and carry out commands to
affect the environment. Communication and cooperation is
important for theses systems since their robots work as a
collective team to finish common tasks. Several taxonomies
and metrics have been defined to classify these systems. For
example, Dudek, etc. [1] classifies robotic collectives along
seven dimensions: size of the collective, communication
range, communication topology, communication bandwidth,
collective reconfigurability, processing ability of each
collective unit, and collective composition. Balch [2]

classifies the performance metric of multirobot tasks based on
time, subject of action, resource limits, group movement,
platform capabilities, etc.

The increasing complexity of collective robotic systems
calls for systematic methods as well as supporting
environments to experiment, understand, and evaluate these
systems. To serve this purpose, modeling and simulation
technologies are frequently applied. With simulation-based
methods, models of robots can be built and simulated.
Different configurations can be easily applied to experiment
and measure the performance of the system under
development. To allow simulation of robotic systems that
actively interact with an external environment, an
environment model needs to be created. This environment
model serves as a “virtual” environment to provide sensory
input to robot models and to response to robots’ actuation. For
example, a virtual environment for mobile robots simulation
can have virtual obstacles that can be sensed by robot models,
and it responds to robots’ movements by updating new
sensory information to robot models.

While robot models can be created and studied in a
simulated environment, replacing some of the robot models
with their real robot counterparts will bring simulation-based
study one step closer to the reality and provides the flexibility
to allows real robots to be experimented in a virtual
environment. This capability of robot-in-the-loop simulation
is especially useful for large-scale cooperative robotic
systems whose complexity and scalability severely limit
experimentation in a physical environment using all real
robots. This paper presents an approach that allows a
cooperative robotic system to be effectively evaluated in a
virtual environment with combined real and virtual robots.
This research is an extension to our previous work on a
simulation-based software development methodology for
cooperative robotic systems [3, 4]. This methodology
supports “model continuity” so the simulation models in the
design stage can be directly mapped to real robots to control
the real robots in execution. It greatly eases the transition
from simulation-based study to real robot implementation and

increases the confidence that the final system implements the
behavior as been developed. This research is based on the
Discrete Event System Specification (DEVS) modeling and
simulation framework [5].

The concept of virtual environment has been largely used
by the technology of virtual reality (VR), which has been
applied to various areas such as simulation of manufacturing
plants, the planning of robotic workcells, and robot
teleoperation systems. While the research of VR mainly deals
with the interaction with human operators, our work focuses
on the interaction between robots and the virtual environment.
The following research work is related to our research from
this perspective. Komoriya and Tani [6] developed a virtual
environment that allows a single real robot to be
experimented in a virtual environment. Wang [7] proposed a
simulation environment that allow real and virtual robot to
work together. The work of RAVE [8] developed a simulation
environment that supports multiple mobile robotic systems.
Our research extends these works by developing a well-
defined architecture, an incremental development process,
and by integrating experimental frames to measure
cooperative robotic systems with combined real and virtual
robots in a systematic way.

This paper is organized as follows. Section 2 presents the
virtual measuring environment from three aspects: the
architecture, the measuring process, and the relationship to
experimental frames. Section 3 describes a robotic convoy
system as an illustrative example. The models of this system
are first described, several metrics are then presented, and
some preliminary simulation data is given. Section 4
concludes this work and provides future research directions.

2. A VIRTUAL EVALUATION
ENVIRONMENT FOR ROBOTIC SYSTEMS
The effectiveness of this simulation-based virtual evaluation
environment is supported by a well-defined architecture, an
incremental measuring process, and by integrating
experimental frames to specify metrics for performance
measurement. Next we present these three aspects
respectively.

2.1 Architecture of the Virtual Evaluation
Environment
In this research we view robotic systems as a particular form
of real-time systems that monitor, respond to, or control, an
external environment. This environment is connected to the
computer system through sensors, actuators, and other input-
output interfaces [9]. A robotic system from this point of
view consists of sensors, actuators and the decision-making
unit. A cooperative robotic system is composed of a
collection of robots that communicate with each other and
interact with an environment.

This above description suggests the basic structure for a
simulation-based virtual environment for robotic systems: an

environment model, and a collection of robot models that
include a decision making model, sensors, and actuators. The
environment model represents the real environment within
which the robotic system will be executed. It may include
virtual obstacles, virtual robots, or any other entities that are
useful for simulation-based study. It forms a virtual
environment for the robots. The robot model represents the
control software that governs the robot’s behavior. It also
includes sensor and actuator interfaces to bridge the decision-
making model and the simulation-based virtual environment.
In our research, we clearly separate a robot’s decision-making
unit, which is modeled as a DEVS atomic or coupled model,
from the sensors and actuators that are modeled as DEVS
Activities. Couplings can be added between DEVS Activities
and the environment model thus messages can be passed
between the decision-making model and the environment
model through sensor/actuator Activities.

virtual obstacle
virtual sensors

virtual environment

virtual counterpart
of the real robot

virtual robots

Control
Model

HIL actuators

wireless
communication

computer mobile robot
Figure 1: Architecture of robot-in-the-loop simulation

The clear separation between robots’ decision-making

model and sensor/actuator interfaces brings several
advantages. First, it separates a robot’s decision-making from
hardware interaction, thus making it easier for the designer to
focus on the decision-making model, which is the main
design interest. Secondly, the existence of a sensor/actuator
interface layer makes it possible for the decision-making
model to interact with different types of sensors/actuators, as
long as the interface functions between them are maintained
the same. Thus depending on different experimental and
measuring objectives, a robot model can be equipped with
different sensors/actuators to be experimented and measured.
Our previous work [10] has taken advantage of these features
to allow direct transferring of the decision-making models
from simulation to real robots execution – a capability
referred as model continuity. During simulation, the decision-
making model interacts with a virtual environment through
virtual sensors/actuators; during real execution, the real
robots’ decision-making models interacts with a real
environment through real sensor/actuator interfaces. An
intermediate stage can also be developed to allow the
decision-making model on a real robot to interact with the
simulation-based virtual environment. We call this stage
robot-in-the-loop simulation. It is achieved by configuring a
real robot to use a combination of virtual and real

sensors/actuators. For example, Figure 1 shows an
experimental setup where one real mobile robot works
together with a virtual environment. In this example, the
mobile robot uses its virtual sensor to get sensory input from
the virtual environment and uses its real motor interface to
move the robot. As a result, this real robot moves in a
physical field based the sensory input from a virtual
environment. Within this virtual environment, the robot can
“see” virtual obstacles and other virtual robots that are
simulated by computers. This capability of robot-in-the-loop
simulation brings simulation-based study one step closer to
the reality. It also makes it possible to study and measure
several real robots within a large robotic system that may
include hundreds of robots. In this case, the rest of robots can
be provided by the simulation-based virtual environment.

One important issue for the robot-in-the-loop simulation
is the synchronization between the real robots and the virtual
environment. For example, in Figure 1, when the decision-
making model issues a moving command, the real robot will
move a distance in the physical environment. This change of
position should also be updated by the virtual environment.
For this purpose, each real robot has a virtual counterpart in
the virtual environment. When a real robot moves, the
position of its virtual counterpart will be updated. Thus the
synchronization between the real robot and the virtual
environment is actually the synchronization between the real
robot and its virtual counterpart. Ideally, an independent
monitoring system is needed to track the movement of the
real robots and then inform the virtual environment to
synchronize the distance and time of robots’ movements. In
our current implementation, a set of HIL (hardware-in-the-
loop) sensors/actuators has been developed. These HIL
sensors/actuators drive the real sensor/actuators, while in the
meantime are coupled to the virtual environment thus
messages can be sent to it. For the example shown in Figure
1, the HIL motor drives the motor of the robots. In the
meantime it catches the moveComplete signal returned from
the motor and then sends a message to the virtual
environment to update the position of its virtual counterpart.

2.2 From Robot Model To Real Robot – An
Incremental Measuring Process

Based on this virtual measuring environment, an incremental
measuring process is developed. This process includes three
steps and supports smooth transitions between them. These
steps are measuring based on conventional simulation,
measuring based on robot-in-the loop simulation, and
measuring based on real robot execution. Figure 2 gives an
example with two robots to illustrate this process.

The first step is conventional simulation, where all
components are models and simulated by fast-mode or real-
time simulators in one computer. As shown in Figure 2(a),
both robot models are equipped with virtual sensors and
actuators to interact with the virtual environment. Couplings
between two robots can also be added so they can send

messages to each other. We note that this is the same setup as
the simulations that most robotic research uses. It has the
most flexibility as all components are models and different
configurations can be easily applied to measure the system
under development.

Robot
Model

Robot
Model

Virtual Environment

Virtual
Sensor

Virtual
Actuator

Virtual
Sensor

Virtual
Actuator

Robot
Model

Real
Robot

Virtual Environment

Virtual
Sensor

Virtual
Actuator

Virtual
Sensor

HIL
Actuator

Real
Robot

Real
Robot

Real Environment

Real
Sensor

Real
Actuator

Real
Sensor

Real
Actuator

(a) (b) (c)
Figure 2: An incremental measuring process

The second step is robot-in-the-loop simulation where

one or more real robots are measured and experimented
within a virtual environment together with other virtual robots
(robot models) that are simulated by computer. In this step,
the virtual robots still use virtual sensors/actuators. However,
depending on the measuring objectives, the real robots may
have a combination of virtual and HIL sensors/actuators. For
example, the real robot shown in Figure 2(b) uses a virtual
sensor and a HIL actuator. The couplings between the two
robots are maintained the same so the real and virtual robots
can interact with each other in the same way as in the first
step. However, the real commutation in this step happens
across a wireless network, which is transparent to the robots.
Since real robots are involved in the simulation, robot-in-the-
loop simulation has to run in a real-time fashion.

The final step is the real system measurement, where real
robots are measured in a real physical environment. These
robots use real sensors and actuators. They communicate in
the same way as the first two steps since the couplings
between them are not changed through the process. The
measurement of this step is from the reality, thus having the
most fidelity. However, it is also most costly and time
consuming among the three steps.

This incremental measuring process brings simulation-
based study closer and closer to the reality. As the process
proceeds, the flexibility (easy to experiment different
configurations) and productivity (time saving and cost saving)
of the measurement decreases and the fidelity (loyal to the
reality) of the measurement increases.

2.3. Specify Measuring Metrics Using Experimental
Frame

An experimental frame is a specification of the conditions
within which the system is observed or experimented [5]. In
DEVS-based modeling and simulation framework, an
experimental frame is realized as a system that interacts with
the source system, or System Under Test (SUT), to obtain the
data of interest under specified conditions. It consists of four
major subsections:
• input stimuli: specification of the class of admissible

input time-dependent stimuli. This is the class from

which individual samples will be drawn and injected into
the model or system under test for particular
experiments.

• control: specification of the conditions under which the
model or system will be initialized, continued under
examination, and terminated.

• metrics: specification of the data summarization
functions and the measures to be employed to provide
quantitative or qualitative measures of the input/output
behavior of the model. Examples of such metrics are
performance indices, goodness-of-fit criteria, and error
accuracy bound.

• analysis: specification of means by which the results of
data collection in the frame will be analyzed to arrive at
final conclusions. The data collected in a frame consists
of pairs of input/output time functions.
When an experimental frame is realized as a system to

interact with the SUT (or its model), the four specifications
become components of the driving system. For example, a
generator of output time functions implements the class of
input stimuli.

Integrate experimental frames into the virtual measuring
environment brings the advantage that measuring metrics can
be formally specified. More research is on the way to
integrate them in a structured way. In the meantime a set of
measuring metrics is also under development for cooperative
robotic systems.

3. ROBOT CONVOY: A CASE STUDY
EXAMPLE
The presented virtual measuring environment has supported
the development of a robotic convoy system. Below we
briefly describe the model of this system, its measuring
metrics, and some preliminary results that are collected from
simulation-based study. We note that most results presented
in this paper are collected from simulations that do not
involve real robots. But in the next step we plan to measure
the system using robot-in-the-loop simulation and expect to
reach more interesting results. For example, we plan to use
one real robot to run robot-in-the-loop simulation to check the
convoy speed of this real robot and compare it with the data
collected from the conventional simulation. Another result
that we plan to check is to use two real robots neighboring to
each other and then check the back robot’s position errors
based on the position and direction of its front robot in the
physical environment.

3.1 System Description and System Model
This robot convoy system consists of an indefinite number of
robots, saying N robots (N>1). These robots are in a line
formation where each robot (except the leader and the ender)
has a front neighbor and a back neighbor. The robots used in
this system are car type mobile robots with wireless

communication capability. They can move forward/backward
and rotate around the center, and have whisker sensors and
infrared sensors. [11].

One of the basic goals of this convoy system is to
maintain the coherence of the line formation and to
synchronize robots’ movements. Synchronization means a
robot cannot move forward if its “front” robot doesn’t move,
and it has to wait if its “back” robot doesn’t catch up. To
serve this purpose, synchronization messages are passed
between a robot and its neighbors. To achieve coherence of
the line formation, the moving parameters of a “front” robot
are passed back. This allows the back robot to plan its own
movement accordingly based on its front robot’s movement.
The system has no global communication and coordination
since we want to study how global behavior can be achieved
using localized sensing and communication.

Robot2

BReadyIn

FReadyIn

FReadyOut

BReadyOut

Robot3

BReadyIn

FReadyIn

FReadyOut

BReadyOut

FReadyOut
Robotn

FReadyIn
Robot1BReadyIn

BReadyOut…
…

Robot2

BReadyIn

FReadyIn

FReadyOut

BReadyOut

Robot2

BReadyIn

FReadyIn

FReadyOut

BReadyOut

Robot3

BReadyIn

FReadyIn

FReadyOut

BReadyOut

Robot3

BReadyIn

FReadyIn

FReadyOut

BReadyOut

FReadyOut
Robotn

FReadyIn FReadyOut
Robotn

FReadyIn
Robot1BReadyIn

BReadyOut
Robot1BReadyIn

BReadyOut…
…

Figure 3: System model of the robotic convoy system

Figure 3 shows the model of this system. As we can see,

this model includes N models (each of them is a DEVS
coupled model), which are corresponding to the N robots in
the system. Each intermediate robot model has two input
ports: FReadyIn, BReadyIn and two output ports: FReadyOut,
BReadyOut. These ports are used to send and/or receive
synchronization messages between robots and to pass moving
parameters from a “front” robot to the “back” robot. The
couplings between them are shown in Figure 3.

During the convoy, the leader robot (Robot1 in Figure 3)
decides the path of convoy. Meanwhile, it will turn around if
its infrared sensors indicate that there are obstacles ahead. All
other robots conduct movement based on their sensory input
and the moving parameters passed back from their front
robots. Specifically, a robot will “predict” where its front
robot is and turn to that direction. It then moves forward or
backward to “catch” its front robot. After that it may go
through an “adjust” process to make sure that it does not lose
its front robot. This adjust process is necessary because noise
and variance exist during a movement so a robot will not
reach the desired position and direction after the movement.
During adjustment, a robot “scans” around until it finds its
front robot. Then it sends out a synchronization message to
“inform” its front and back neighbors. Thus robots actually go
through a basic “turn—move—adjust—inform” routine. For
example, a robot Ri-1 will turn angle αi-1 to the direction of its
front robot Ri-2, move distance di-1 to “catch” its front robot,

and then adjust itself with angle βi-1 to make sure it “sees” its
front robot Ri-2. Figure 4 shows these moving parameters.

δi

αi-1αi

βi-1

a
di-1

di

D

Ri
Ri-1

δi′
Ri-1′

Ri′

δi

αi-1αi

βi-1

a
di-1

di

D

Ri
Ri-1

δi′
Ri-1′

Ri′

Figure 4: Moving parameters for robots’ convoy

After the adjustment, Ri-1 sends out a synchronization

message to its neighbors. This synchronization message
contains information of αi-1, di-1, and βi-1. Based on this
information and its sensory data, Ri plans its movement. This
is shown by Figure 4 and formulated by formula (1)-(3).
Among these formulas, δi is the angle (direction) difference
between Ri and Ri-1; a is the distance between robot Ri and Ri-1
and can be calculated from the robot’s infrared sensor data
and the size of the robot. Specifically, the turning angle αi of
Ri is calculated by formula (1); the moving distance di can be
calculated from formula (2), where D is the desired distance
between Ri and Ri-1. Then the new angle difference δi'
between Ri and Ri-1 is updated by formula (3), where βi is the
adjusting angle for Ri. We note that due to noise and variance,
the δi' calculated from formula (3) will not be the exact angle
difference between Ri and Ri-1. However, it seems that this
error does not accumulate as time proceeds.

)cos(*
)sin(*

11

11

iii

iii
i da

dtg
δα

δαα
++

+
=

−−

−− (1)

Ddd
i

iii
i −

+
= −−

α
δα

sin
)sin(* 11 (2)

iiiiii βαβαδδ −−++=′
−− 11 (3)

The model of each robot is developed based on the

subsumption architecture [12]. It has the Avoid model to
avoid collisions with any objects; the Convoy model to
control robot’s movement based on the rules as described
above. It also has DEVE Activities to represent the
sensor/actuator interfaces of the robot. A detailed description
of a similar model can be found at [3].

Figure 5 shows the Environment model that we used for
this example. This Environment model includes
TimeManager models and the SpaceManager model. For
each robot, there is a TimeManager corresponding to it. This
TimeManager models the time for a robot to conduct a
movement. The SpaceManager models the moving space,

including the dimension, shape and location of the field and
the objects inside the field. It also keeps track of robots’ (x,y)
positions and moving directions during simulation. Such
tracking is needed to supply robots with the correct sensory
data. To account for variability in the real motion, a random
number generator provides a source of additive noise. Note
that in this example we have ignored the dynamics of a
movement as we treat each movement as an atomic action so
the positions and directions of robots are updated discretely.

move1 sensorData1

sensorDataN

startMove TimeManager1
Robot1 t1

TimeManager1
Robot1 t1

SpaceManager

Robot1 (x, y)

RobotN (x, y)

Obstacles (x, y)

moveComplete1

moveN startMove TimeManagerN
RobotN tN

TimeManagerN
RobotN tN

moveCompleteN

…
…

…
…

…
…

…
…

…
…

Figure 5: Environment model

With all these models, simulation was run and a graphic

user interface was developed to show robots’ movements.
Figure 6 shows two snapshots of a robotic convoy system
with 30 robots within a field surrounded by walls. As can be
seen in this system, robots will not follow the exact track of
the leader robot. However, they are able to follow their
immediate front robots closely, thus forming a coherent team
from a global point of view. Note that obstacles can also be
easily added within the field.

(1) (2)
Figure 6: Snapshot of robots in motion

3.2 Measuring Metrics and Simulation Results
A good set of measuring metrics is very important to study
this robotic convoy system. This section describes several
metrics that we have developed. These metrics are neither
final nor complete. However, they serve as a starting point to
analyze and measure this system. Some preliminary
simulation results based on these metrics are also presented
and analyzed.

Convoy Speed and Number of Adjustment

The convoy speed of the team and the number of
adjustment for each robot are among the most obvious results
that can be obtained from simulation-based study. Both them
can be viewed as metrics for the system’s performance. In
fact, these two metrics are correlated to each other: the larger
the number of adjustment, the slower the convoy speed. Since

robots move in a coordinated way, we define the convoy
speed as the speed of the leader robot. This can be calculated
by dividing the moving distance by the logic time of
simulation. The number of adjustment can be obtained
directly from each robot.

Formation Coherence

Due to noise and variance in reality, there exists
difference between a robot’s real position, direction (angle)
and its desired position and direction. This difference is
affected by the variance of movement in real execution,
which is modeled by adding noise into robot’s movement in
simulation. On the other hand, even though variance exists,
this system can still conduct the convoy with some level of
formation coherence. This is because an “adjust process” has
been implemented that allows robots to adjust their
positions/directions based on the feedback from its infrared
sensors. Apparently the level of formation coherence is
affected by the variance of movement. If this variance is large
enough, even though a adjust process exists, the system will
eventually fail to maintain its formation coherence.

To study this problem, we calculate each robot’s position
errors under the effect of distance noise factor (DNF) and
angle noise factor (ANF). These two factors are the ratio of
the maximum distance variance and maximum angle variance
as compared to the robot’s moving distance respectively. For
example, if the angle noise factor is 0.1 and a robot moves
forward 60, after its movement the robot will have maximum
6 degrees variance from its desired direction. Once each
robot’s position error is known, the average position error of
the team can be derived. This average is an indicator for the
convoy system’s formation coherence: the smaller the error is,
the more coherent the convoy system is. Formula (4) – (7)
shows how the average position error can be calculated. In
these formulas, D is the desired distance between robots and
N is the total number of robot. In case the formation
coherence is broken, saying robot Ri lose itself, Ei(t) will
increase continuously, making the average error E(t) increase
too. Note that the desired position (xi-desired, yi-desired) of Ri is
calculated from its front robot Ri-1’s position, not related to
any specific formations. Thus systems with different line
formation shapes may have the same position errors.

22))()(())()(()(tytytxtxtE desirediidesirediii −− −+−= (4)

)(cos*)()(11 tDtxtx iidesiredi −−− −= θ (5)
)(sin*)()(11 tDtyty iidesiredi −−− −= θ (6)

N
tEtE i∑=
)()((7)

Figure 7 shows the average poison error for a system

with 30 robots, DNF=0.1, and ANF=0.08. The system starts
with all robots at their desired positions. Thus as simulation
proceeds, the position error increases from 0. It then reaches a
“stable” stage where the position error oscillates around an

average value (35.7 In this example). As we can see, in this
system the position error does not accumulate over time. Thus
we say that this system’s formation coherence is maintained.

average position error with 30 robots

0
5

10
15
20
25
30
35
40
45

1
78

9
15

77
23

65
31

53
39

41
47

29
55

17
63

05
70

93
78

81
86

69
94

57
10

24
5

11
03

3

simulation steps

po
si

tio
n

er
ro

r

DNF=0.1, ANF=0.08

Figure 7: Average position error with 30 robots

Sensitivity

Since the formation coherence is affected by the noise
factors, sensitivity analysis is useful to study if the system is
robust to noise factors. To conduct sensitivity analysis, we run
simulations with different noise factors and calculate the
position errors. Figure 8 shows a system with 30 robots’
average position errors under the effect of three sets of DNF
and ANF: set 1 has DNF = 0.04, ANF = 0.04; set 2 has DNF
=0.1, ANF = 0.08; set 3 has DNF = 0.2, ANF = 0.1. For
analysis purpose, we omit the “transient ” stage when the
simulations start.

Position errors vs. noise factors

20

25

30

35

40

45

1
56

4
11

27
16

90
22

53
28

16
33

79
39

42
45

05
50

68
56

31
61

94
67

57
73

20
78

83
84

46
90

09
95

72
simulation steps

po
si

tio
n

er
ro

rs

Series1
Series2
Series3

Figure 8: Average position errors vs. noise factors

Figure 8 shows that different noise factors result in

different error patterns. However, for this system, all three
errors are still maintained within a boundary (they do not
accumulate as time increases). By calculating the average of
them, we have average1 = 35.1, average2 =35.7, and average3
=36.6. From these data we can see that as the noise factor
increases, the position error increases too. However, this
change is insignificant as compared to change of the noise
factors. Although more analysis is needed to reach any
quantitative conclusion, we can say that this system is
insensitive to the noise factors as long as these factors are
within a safe boundary. This is because the system
impalements an adjust process that allows robots to adjust
themselves based on the feedback from their IR sensors.

Scalability
Scalability refers to the ability of a system to maintain its

quality as the scale of the system increases. To study
scalability, we change the number of robots and run
simulation to see how that affects system’s average position
error (average over number of robots and over time). Figure 9
shows the position errors for the number of robots to be 10,
20, 30, and 40 with DNF =0.1 and ANF =0.08. It shows that
the average position error increases as the number of robot
increases. If this trend holds true with more robots, the system
is not scalable in the sense that it will eventually break as
more robots are added into the system.

Position error vs. number of robots

15

20

25

30

35

40

0 10 20 30 40 50

number of robots

po
si

tio
n

er
ro

r

DNF=0.1, ANF=0.08

Figure 9: Average position errors vs. number of robots

4. CONCLUSION

This paper presents a simulation-based virtual evaluation
environment for cooperative robotic systems. This virtual
environment allows a combination of real and virtual robots
to work together for a system-wide study and measurement.
An incremental measuring process is developed to transition
simulation-based study closer to reality as the process
proceeds. Based on this virtual environment, a robotic convoy
system was developed and presented in this paper as an
illustrative example. Coherence metrics for this system were
defined and preliminary simulation results were discussed.

We note that most results presented in this paper are
collected from simulations that do not involve real robots. But
in the next step we plan to measure the system using robot-in-
the-loop simulation and expect to gather more interesting
results. In the meantime, a set of more complete evaluation
metrics is also under development for the robotic convoy
systems presented in this paper.

5. ACKNOWLEDGEMENT
This research was supported by NSF grant DMI- 0122227,
“DEVS as a Formal Framework for Scalable Enterprise
Systems.”

6. REFERENCE

[1] Dudek, G., Jenkin, M., and Milios, E., “A Taxonomy of
Multirobot Systems”, Robot Teams, Edited by Balch, T., and
Parker L.E., A K Peters, 2002

[2] Balch, T., “Taxonomies of Multirobot Task and Reward”,
Robot Teams, Edited by Balch, T., and Parker L.E., A K
Peters, 2002
[3] Hu, X., and Zeigler, B. P., “Model Continuity to Support
Software Development for Distributed Robotic Systems: a
Team Formation Example”, Journal of Intelligent & Robotic
Systems, Theory & Application, Special Issue: Multiple and
Distributed Cooperating Robots, pp. 71-87, January, 2004
[4] Hu, X., and Zeigler, B.P., “A Simulation-based Software
Development Methodology for Cooperative Real-time
Intelligent Systems“, to appear in Annual of Complex Systems
and Intelligence Science, World Scientific Publishing Co.,
2004
[5] Zeigler, B.P., Kim, T.G., et al.. Theory of Modeling and
Simulation. New York, NY, Academic Press, 2000.
[6] Komoriya, K.; Tani, K., “Utilization of the virtual
environment system for autonomous control of mobile
robots”, Intelligent Motion Control, 1990. Proceedings of the
IEEE International Workshop on, Volume: 2, 20-22 August
1990
[7] Wang. J.: Methodology and design principles for a generic
simulation platform for distributed robotic system
experimentation and development. Systems, Man, and
Cybernetics, 1997. Computational Cybernetics and
Simulation., 1997 IEEE International Conference on, Volume:
2, 1997 Page(s): 1245 -1250 vol.2
[8] Dixon, K.; Dolan, J.; Wesley Huang; Paredis, C.; Khosla,
P., “RAVE: a real and virtual environment for multiple
mobile robot systems”, Intelligent Robots and Systems, 1999.
IROS '99. Proceedings. 1999 IEEE/RSJ International
Conference on , Volume: 3 , 17-21 Oct. 1999
[9] Shaw, S. C., Real-time Systems and Software, John Wiley
& Sons, 2001
[10] Hu, X., A Simulation-based Software Development
Methodology for Distributed Real-time Systems, Dissertation,
University of Arizona, 2003
[11] Peipelman. J., N. Alvarez, K. Galinet, R. Olmos.: 498 A
& B Technical Report. Department of Electrical and
Computer Engineering, University of Arizona, 2002
[12] Brooks, R. A., "A Robust Layered Control System For A
Mobile Robot", IEEE Journal Of Robotics And Automation,
RA-2, April. pp. 14-23, March 1986

